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Abstract. A universal algorithm to construaV-particle (classical and quantum) completely
integrable Hamiltonian systems from representations of coalgebras with Casimir elements is
presented. In particular, this construction shows that quantum deformations can be interpreted
as generating structures for integrable deformations of Hamiltonian systems with coalgebra
symmetry. In order to illustrate this general method, th€2, 1) algebra and the oscillator
algebrah, are used to derive new classical integrable systems including a generalization of
Gaudin—Calogero systems and oscillator chains. Quantum deformations are then used to obtain
some explicit integrable deformations of the previous long-range interacting systems and a (non-
coboundary) deformation of thd+ 1) Poincaé algebra is shown to provide a new Ruijsenaars—
Schneider-like Hamiltonian.

1. Introduction

It is well known that quantum groups appeared in the context of quantum inverse scattering
methods as a new kind of symmetry linked to the integrability of some quantum models
constructed in Lax form (see [1-3]). Quantum algebras and groups are related by duality
[4] and, in the previous context, the concept of ‘quantum algebra invariance’ expresses the
commutativity of a given Hamiltonian with respect to the generators of a certain quantum
algebra. Since their introduction, the construction and analysis of quantum group invariant
integrable models has attracted much effort (see [5-9] and references therein) and a great
amount of literature has also been devoted to quantum group theory (see, for instance, [10]).

From an abstract mathematical point of view, two ideas were emphasized as a
consequence of these developments: the relevance of deformations (in the sense of [11]
and [12]) and the concept of Hopf algebra [13]. In particular, quantum algebras are simply
defined as Hopf algebra deformations of usual universal enveloping Lie algebras. On the
other hand, although quantum semisimple algebras were those initially linked to integrable
models, the construction of quantum deformations of non-semisimple Lie algebras has also
been successfully explored by using different methods (see [14, 15]).

This paper establishes a general and constructive connection between Hopf algebras and
integrability that can be stated as follows. Giwary coalgebra A, A) with Casimir element
C, each of its representations gives rise to a family of completely integrable Hamiltonians
H™) with an arbitrary numbeN of degrees of freedom. We provide a constructive proof
of this statement that contains the explicit definition of such Hamiltonians and their integrals
of motion. Moreover, both classical and quantum mechanical systems can be obtained from
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3792 A Ballesteros and O Ragnisco

the samgA, A), provided we endow this coalgebra with a suitable additional structure (that
will be either a Poisson bracket or a nhon-commutative product prespectively). Note

that, instead of Hopf algebra structures, our construction makes use of the more general
term of coalgebra (neither the counit nor the antipode mappings will be explicitly used).

It is important to emphasize that the validity of this general procedure by no means
depends on the explicit form ok (i.e. on whether the coalgebia, A) is deformed or
not). This fact is crucial in order to clarify the significance of quantum algebras (and
groups) in our framework: they are ‘only’ a particular class of coalgebras that can be used
to construct systematically integrable systems. However, the specific feature of such systems
will be that they ardntegrable deformation®f those obtained by the same method when
we start from the corresponding non-deformed coalgebra. Moreover, usual Lie algebras
are always endowed with a coalgebra structure, and we shall see that many interesting
coalgebra-induced systems can be derived from them without making use of any deformation
machinery. In this way, a new general application (intrinsically different from the usual ones
[16, 17]) of Lie algebras in the field of integrable systems is presented. At this point, we
would like to mention that this result concerning non-deformed Lie coalgebras was already
proven in [18], and it can also be extracted from [19], but without explicit mention of the
underlying coalgebra structure.

In the next section the basics of Hopf algebras are revisited and the definition and
properties of Poisson coalgebras presented. Realizations of Poisson coalgebras on canonical
coordinates are introduced and coupled with the coproduct map in order to obtain two-
particle representations. Section 3 is devoted to the construction of a famiy ef 2
integrable systems from s (2, 1) Poisson coalgebra structure. An integrable deformation
of this family is afterwards obtained by making use of the (standard) quantum deformation of
this algebra. This two-dimensional example contains the seminal ideas of our construction,
that need a proper generalization in order to reach the Nulimensional case. The
mathematical improvements needed to succeed in such a general scheme are presented
in section 4, that contains an analysis of the usual definition ofAtie coproduct map
AN A 5 AR A®...N) ® A in terms of a recurrence relation that starts with the second-
order coproducth = A@. It turns out that it is possible to rewrite ™) in a different way
that is much more convenient for our purposes.

Section 5 introduces the general constructive result, valid for both classical and quantum
mechanical systems: th¥th coproduct of any (smooth) function of the generators of a
coalgebra defines an integrable Hamiltonian whose constants of motion in involution are
given by themth coproducts of the Casimir eleme€@t with m = 1,..., N. Functional
independence among the constants is guaranteed by construction. Some comments
concerning the specific features of both the classical and the quantum mechanical cases
are included.

In order to show the direct applicability of these results, section 6 includes various
examples based on phase-space realizations of coalgebras (although the quantization of
some of them is not difficult, a careful treatment of some gquantum mechanical examples
will be presented in a forthcoming paper). The first makes use of the classi@ll)
Poisson coalgebra in order to construct a new multiparameter generalization of an integrable
system that has been recently introduced by Calogero [20] and whose coalgebra symmetry
is manifestly extracted. The second non-deformed example is provided by the (primitive)
coalgebra linked to the (non-semisimple) oscillator algéhrahat leads to a straighforward
proof of the integrability of a system of coupled oscillators first given in [21]. Afterwards,
the fact that quantum algebras can be interpreted as the generating objects of integrable
deformations is illustrated by using the standard quantum deformatier(&f1) to obtain—
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through suitable Poisson realizations of this quantum algebra—an integrable deformation
of the previousso(2, 1) family. Finally, another interesting example of a quantum algebra
induced integrable system is provided by the Vaksman—Korogodskii deformation [22] of
the (1+ 1) Poincaé algebra, which gives rise to a Ruijsenaars—Schneider-like integrable
Hamiltonian [23]. It is interesting to note that, in this case, the system defined through
the non-deformed (% 1) Poincaé algebra is quite trivial; consequently, the quantum
deformation seems sometimes to be essential in order to produce a dynamically relevant
Hamiltonian.

In sectimn 7 a deeper insight into the(2, 1) models is presented by precluding the
use of canonical realizations and working with classical ‘angular momentum variables’. In
this way, the long-range nature of the interaction of these models is clearly appreciated.
Under this realization, the non-deformed coalgebra gives rise to the hypebaliE
Gaudin magnet [24], and the integrable deformation linked/t@so(2, 1)) is translated
into physical terms as the introduction of a variable range exchange [25] within the Gaudin
Hamiltonian. Finally, the paper is closed with some remarks concerning open guestions and
future developments.

2. Coalgebras and Poisson realizations

2.1. Hopf algebras

A Hopf algebrais a (unital, associative) algeb(d, -) endowed with two homomorphisms
called coproduct(tA : A — A ® A) and counit(e : A — C), as well as an
antihomomorphism (the antipode: A —> A) such thatva € A:

(d® A)A(a) = (A ® id)Aa) (2.1)
([d®e)A(a) = (e Qid)A(a) =a (2.2)
m((id ® y)Aa)) = m((y ®id)A(a)) = €(a)l (2.3)

wherem is the usual multiplication mapping (¢ ® b) = a - b. This notion was introduced
by Hopf [13] in a cohomological context but, as we shall see, it expresses a basic idea
in many-body problems and it is often implicitly used. The aim of this paper is to make
its physical significance more explicit, that is basically concentrated within the coproduct
A. In fact, hereafter we shall deal mainly with coalgebras, i.e. algebras endowed with a
coassociative (2.1) coprodugt.

For our purposes, the most interesting example of coalgebra is provided by the universal
enveloping algebrd/ (g) of a Lie algebrag with generatorsX;. The algebral/(g) can be
endowed with a Hopf algebra structure by defining,

AX)=10X;+X;®1 AD=1®1
€e(X;))=0 ehH=1 (2.4)
y(Xi) = —-X; Yy =1

These maps acting on the generatorg @fre straightforwardly extended to any monomial

in U(g) by means of the homomorphism conditiaX - Y) = A(X) - A(Y). In general,

an elementr of a Hopf algebra such that(Y) =1® Y + Y ® 1 is calledprimitive, and

Friedrichs’ theorem ensures that, &7(g), the only primitive elements are the generators

X; [26]. On the other hand, the homomorphism condition implies the compatibility of the
coproductA with the Lie bracket

[AX), AX)]aga = A([Xi, X;]14) VX, X; €g. (2.5)
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From a physical point of view, i is the algebra of observables of some one-particle
physical system, the coproduct in (2.4) is just the usual definition of ‘total’ quantum
observables for the two-particle system.

In this context, quantum algebras are just coalgebra deformatiobiggf a deformed,
but coassociative, coproduct is defined and a set of (possibly deformed) commutation rules
can be found in such a way that the compatibility condition (2.5) is recovered. The whole
‘quantum’ structure depends on (perhaps more than one) deformation parameters and the
non-deformed coalgebra (2.4) is recovered when all the parameters vanish. A well known
example is the standard (Drinfel’d—Jimbo [4, 27]) deformatiodfo(2, 1)) with deformed
coproduct

AL) =10 L+ L®1
A =e i@ ji+ ] @ e2” (2.6)
Ay =€ 2@ i+ J3 @ e’

and deformed commutation rules compatible with (2.6)

sinh(zJ5)

[J2, 1] = J3 [J2, J3] = —J [J3, Ji] = (2.7)

Another important object is essential for our purposes: the existence of a deformed Casimir
that commutes with all the generators of the quantum algebra and, in this case, reads

~ 2

.. . sinh(3 J. ~ -

C.(J1, J2, J3) = (2M> —JE-JZ. (2.8)
Z

As we shall see, both deformed and non-deformed Casimir elements will be the keystones

of the integrability properties of the systems induced from their respective coalgebras.
2.2. Poisson coalgebras and canonical realizations

In general, aPoisson algebraP is a vector space endowed with a commutative
multiplication and a Lie bracket } that induces a derivation on the algebra in the form

{a, bc} = {a, b}c + b{a, c} VYa,b,c € P. (2.9)
If P and Q are Poisson algebras, we can define the following Poisson structuPexo®:
{a®b,c®d}pgp :=1{a,clp ®bd +ac® {b,d}g. (2.10)

We shall say thaiA, A) is a Poisson coalgebraf A is a Poisson algebra and the
coproductA is a Poisson algebra homomorphism betwdeand A ® A:

{Ag(a), Ay(D)}aga = A({a, b}4) Va,b € A. (2.11)

Obviously, given any Lie algebrg a Poisson coalgebra can be obtained by defining a
Poisson bracket by means of the bivector

A = cfxdy, A Dy, (2.12)

where thex are local coordinates on a certain manifold linked to the generatogsanid
c{?j is the structure tensor fog. We can immediately check that the coproduct (2.4) is
a Poisson map if the Poisson bracket on the tensor product space is defined by (2.10).
Quantum deformations can also be realized as Poisson coalgebras in this way: a natural
Poisson coalgebra linked 13, (so(2, 1)) is given by the bivector

A= 5’38&2 A 3;,1 — (}18(}2 A 853 + wa@ A 8;,1 (213)
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and the coproduct (2.6) where the quantum algebra generators are replaced by their
corresponding local coordinatés on R3. Obviously, the Poisson structure (2.13) wil
be non-degenerate on the symplectic leaf defined by

sinh((6,) \?
(2@) _s2-sl=c. (2.14)

On the other hand, the connection between a Lie algebra and a one-particle system can
be made explicit by considering thatis realized by means of smooth functions on the
one-particle phase spa& with local coordinatesp, ¢)

D(X;) = Xi(p. q). (2.15)

This means that, under the ‘canonical’ Poisson bracket

of oh  0h 0
qdp 9qdp
the ‘generators’ (2.15) close the initial Lie algebra:
Xi(p, @), X;(p, )} = i Xa(p, q). (2.17)

Two different one-particle realizations (2.15) will be equivalent if there exists a canonical
transformation that maps one into the other. A simple example is given by the following
one-particle realization of the Poisson coalgebra linkegh(@, 1):

D(J2) = p D(J1) = pcosq D(J3) = psing. (2.18)
This realization (that leads to a vanishing Casimir function) can be easily deformed:

- sinh(%
C0Ssgq D.(J3) = 2M S
z

- - sinh(%
D.(J»)=p D.(J1) = 2#

ing. (2.19)

These phase-space functions close a quantuB, 1) algebra (2.7) under the canonical
Poisson bracket (2.16).

Now, the essential feature of a Poisson coalgebra becomes evident: if we represent
A ® A by using two copies of (2.15), the functions(X;)(q1, g2, p1, p2) (we use the
notationp ® 1 = p;, 1® p = p,, and so on) define the same Lie algepra

{AX), A(Xj)}aga = A(X;, Xj}a) = C,]'(jA(Xk) VX, X; (2.20)
with respect to a bracket (2.20) given by
2
af oh  dh of
{f,h} = <—— — ——). (2.21)
; dq; dp;  9q; Op;

In particular, (2.21) leads to the Poisson bracket (2.10) provided we have clfosen

a(q1, p1)b(qz2, p2) andh = c(q1, p1)d (g2, p2)-
In the case ofo(2, 1), this coalgebra property means that the following two-particle
functions defined through the coproduct (2.4) and the realization (2.18)

f1(q, p) = (D ® D)(A(J1)) = p1C0OSq1 + p2 COSq2
f2(q, p) = (D ® D)(A(J2)) = p1+ p2 (2.22)
f3(q, p) = (D ® D)(A(J3)) = p1Sing; + p2sing.
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close theso(2, 1) algebra. The deformed construction is also immediate: from (2.6) and
(2.19) we obtain the functions

- sinh(%
fi(g,p) = (D. ® D)(A(J) = 2% 0Sq2
f3(q.p) = (D, ® D.)(A(J2) = p1+ p2 (2.23)

f5(q,p) = (D, ® D)(A(J3)) = oSN P mh(pr) N

z _z SinNEPZ)
cosqe2P2 4 e 2P~ 2- " ¢
z

. 2z 4 S
singie2?? + e 2712 ing,

that close aJ,(so(2, 1)) algebra under the canonical Poisson bracket (2.21).

3. Casimirs and N = 2 integrable systems

Let us fix our attention on the examples of the previous section. If we recall the deformed
Casimir element (2.8) and its non-deformed counterpart
C(, Jo, J3) = I3 — J2 = J% (3.1)

we know that both elements vanish, respectively, under the realizations (2.19) and (2.18)
(different canonical realizations will be labelled by the real value obtained when the Casimir
is represented). However, if in the non-deformed?2, 1) case we compute the coproduct
of the Casimir (3.1), we obtain
A(C) = C(A(J1), A(J3), A(J2))
=1® L+ LD -1 h+hR1D*—(1® s+ /58 1)°
=1C+CRLI+2(,® 2, — 1 ®J1— J3Q J3). 3.2)

When this abstract object is realized by using theepresentation we obtain

C? (g1, 42, p1. p2) = (D ® D)(A(C))
=0+ 0+ 2[p1p2 — (p1€0Sq1)(p2 COSq2) — (p1SiNg1)(p2Singz)]
= 2p1p2(1— codq1 — q2)). (3.3)
Therefore, although the Casimir vanishes on each space, the coprodutiasfa ‘crossed’
contribution that is not trivial in the two-particle realization.
This non-trivial nature ofA(C) is the cornerstone for the systematic generation of a
wide class of two-dimensional integrable systems; in any (Poisson) coalgebra endowed

with a Casimir element, since the coproduct is an algebra homomorphisdi ena central
element withinU (g), we can conclude that

{A(C), A(X)}aga = A({C, X;}4) =0 VX;. (3.4)

Consequently, if the Hamiltoniak{ (X4, ..., X,,) is an arbitrary (smooth) function of the
algebra generators we shall have that

{A(C)’ A(H(le ceey Xm))}A@A = A({Ca H(le ceey Xm)}A) = O (35)

Therefore, a canonical realization of the coproduct of any (smooth) funétiaf the
algebra generators of a coalgebra with Casimir elerdedéfines a two-particle completely
integrable Hamiltonian. In our case, any Hamiltonian
H®(q1, g2, p1, p2) '= (D ® D)(A(H(J1, J2, J3))

= (D ® D)(H(A(J1), A(J2), A(J3))) = H(f1, f2, [3) (3.6)
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will always be in involution with the functioi® ( f1, f2, f3) (3.3). For instance, the function
H = J3 +12J? + k1 J2 (3.7)

wherek; andk; are real parameters (that have a precise geometrical meaning in the context
of pseudo-orthogonal algebras [28]), together with Eheealization and the formula (3.6)
gives rise to the two-particle Hamiltonian

H®(q1, g2, p1, p2) = (p1 + p2)? + 2p1palic2 COSq1 COSqz + k1 SiNG1 SiNg?)
+ P2 (k2 COS g1 + k1 SITP g1) + p5(k2 COS g2 + k1 SIIF g2) (3.8)

that defines a two-parameter family of integrable systems for which (3.3) is a common
constant of motion. If we specializg = x, = 1, we obtain

HP(q1, g2, p1, p2) = 2(p? + p5 + p1p2(1+ cosq1 — q2)). (3.9)

At this point, some remarks are in order.

(@) The choice of the Hamiltonian is constrained by the requirement of functional
independence between the two constants of the motion. In particular, if we choose
k1 = k2 = —1 we shall recover the coproduct of the Casimir; 2>(1 — codg1 — ¢2)),
but now playing the role of the Hamiltonian. However, integrability is now ensured by
taking the coproduct of any generator as the second constant of the motigy (ife
deduce the conservation of the total momemia- p2). Note that, in general, the coproduct
of a given generator is not in involution with (3.8).

(b) Many different Hamiltonians may have the same ‘hidden’ coalgebra symmetry, since
different phase-space representations and choices of the Hamiltonian function are possible.

3.1. N = 2 integrable deformations

Now it is essential to stress that the integrable nature of this construction is preserved for any
possible coalgebra with Casimir element that we could consider. Of course, deformations
of Lie algebras with coalgebra structure fall into this class and, therefore, can be used to
construct integrable systems.

Moreover, if a HamiltonianH® can be constructed by using the previous procedure,
any coalgebra deformation of its symmetry algebra will generate an integrable deformation
HZ@ of H® (provided that a deformed Casimir elemefit and a deformed canonical
realizationD, are available).

In particular, the standard quantum deformations@f2, 1) (2.6)—(2.8) can be used to
define integrable two-particle Hamiltonians through the deformed coproduct of an arbitrary
function ’H of the generators:

H®(q1, g2, p1, p2) := (D, ® D) (A(H(J1, J2, J3)))
= (D, ® D) (H(A(J1), A(J2), A(J3)) = H(f5, 5, fi)- (3.10)

This deformed Hamiltonian will always be in involution with the (deformed) phase-space
representation of the coproduct of the deformed Casimir (2.8), that reads,

CP(q1. 92, p1. p2) = (D, ® D;)(A(C,)) = mma(1— cosq1 — g2))  (3.11)
where
sinh(3 p1) oire sinh( p2)

Ty = 2——27 gl (3.12)
Z Z

7'[1:2
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An example of such a deformed Hamiltonian is provided by (3.7) where the generators are
now replaced by their deformed counterparts
H = J2 4 kpJ? + k1 J2. (3.13)

From (3.10), and by making use of the deformed phase-space realization (2.23), we obtain
the integrable family of Hamiltonians

H?(q1, g2, p1, p2) = (f5)? + k2(f)? + k1 (f5)?
= (p1+ p2)? + 2m17m2(k2 COSq1 COSq2 + k1 SiNG1 SiNg2)
—HTf(Kz cog q1+ K1 sir? q1) + 7T22(K2 cos qo + K1 sir? q2). (3.14)

Now, the deformation of the particular casge= «x, = 1 reads

H®(q1, g2, p1, p2) = (p1+ p2)? + ¥ + w2 + 2mimp c08q1 — q2).  (3.15)

Note that, after deformation, the casg & x, = —1) is no longer the realization of the
deformed Casimir (3.11). Of course, in order to obtain the Casimir as a Hamiltonian we
should conside?{ = C_; then, anyf; can be taken as the remaining integral of the motion
in involution. It also becomes apparent that the limit> 0 of (3.14) is just (3.8).

4. Coassociativity and higher-order coproducts

The coassociativity constraint (2.1) ah means that, in principle, we could extend the
previous procedure in order to obtain a more complex system with three elementary
constituents. If we denot&d = A®@ (in order to make more explicit the fact that
defines a two-particle system) the mapping® : A - A ® A ® A has to be defined
through (2.1) by using one of the following expressions:

A® = (i[d® A®)o A®

A® = (AD gid)o AP, (1)

From (2.1), the result of this procedure is unique and does not depend on the space within
A ® A we had chosen to duplicate.

On the other hand, it is well known that, once the coassociativity has ensured the
correctness of the three-constituents system, the construction can be generalized to an
arbitrary number of tensor products af For instance, we would have that

A® = ([d®id® A®)o A® (4.2)

will give rise to a fourth-order coproduct starting from the third one. In general, this
procedure is described in the literature either by the recurrence relation

AM = ([dd®.."?2Qid® A®@)o AND (4.3)
or by the following similar one
AN = (AP Rid®.. " ?gid®id) o AN, (4.4)

These definitions mean that given ti¥ — 1)th coproduct, theVth one is obtained by
applying A® onto the space located at the very right (resp. left) site. As a consequence,
both (4.3) and (4.4) always emphasize the role of such ‘boundary’ vector spaces within the
tensor product. This should not be necessary, since the essential meaning of coassociativity
is that all elementary spaces are equivalent in order to build up a larger representation space
by using the coproduct.
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The algebraic transcription of this simple observation is the keystone for all further
developements included in this paper, and both the recurrence character of (4.3) and its just
mentioned ‘asymmetry’ can be avoided by means of the following definition

AWM = (A @ AN=M) 5 A@ Vvm=1...,N—-1 (4.5)

whereA® denotes the identity map id. The proof of the equivalence between (4.5) and the

usual one (4.3) is given in appendix A. The meaning of this new expression (4.5) can be

made more clear with the use of Sweedler’s notation [29] that expresses the two-coproduct
A® of an arbitrary element of the algebra as the linear combination

AP (X) = Z X1g @ X2y (4.6)

whereXq1, andX,, are functions depending on the generators of the algebra. By introducing
this language in (4.5) we find that the thdh coproduct of a generator reads

AM(X) 1= Z A (X1) @ AN (X5) Vm=1,...,N—1 (4.7)

which means that the final result can be obtainedvin- 1 different ways, all of them
equivalent, and given by the simultaneous application of two lower-degree coproducts on
each of the two tensor components producedAls).

Now it is not difficult to prove, by induction, than¥) is an algebra homomorphism
betweenA and A®"

[AM(X), AN (¥)} jor = AN (X, Y}) VX,Y € A. (4.8)

A proof for this assertion can be found in appendix B. It is important to stress that the
symbol [x, y} denotes a general bracket, that can be either the Poisson bracket for classical
systems or the usual commutator for quantum mechanical ones. The underlying algebraic
structure is the same for both kinds of systems and the differences existing between them
arise from the different representation spaces we are working in.

In particular, in the case oA = U(g) and A®@ given by (2.4), the followingNth
coproduct for the generators gfis obtained:

AMXH)=X,9191®.."VR1+19X;®1®..Y2x1+---
+1®1®.. " Vei1w X;. (4.9)

which is just the definition of the usual ‘total observable’, and for which the homomorphism
condition is obviously fulfilled.

A more interesting example is provided by the deformation of (4.9) induced from (2.6).
An iterative use of (4.3) leads to the following expressions

AN =he1019.." P91+19Le1)..Y 21+
+191®.." Vo1 )

AV =Jieegeitg.. VD et (4.10)
teihgieetg. NVget ...
teithgeilg. N Vgeihg ] i=13.

Now, by taking into account that, X is a primitive generator ankl is an arbitrary complex

parameter, the relation (e¢'¥) = ¥ ® €'* holds, we can choose any integerrunning
from 1 to N — 1 and check that (4.10) can be written in a much more compact form

ANy =AM () @ettg. N geih et M e il g AN

= A" (J) @t g it I @ AN (] (4.11)
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that exactly corresponds to the result that we would have obtained by directly applying
(4.5). This expression was already used in [18] to demonstrate the integrability of a precise
system constructed from the standard deformatioso@2, 1).

5. The construction of N-particle Hamiltonians

The procedure to obtaiN = 2 integrable systems presented in section 3 can be generalized
to any number of degrees of freedom by making use ofMlie coproduct. The statements

here presented are valid for both classical (Poisson) and quantum mechanical (commutator)
realizations of the underlying coalgebta, A). In order to emphasize this fact, the symbol

[x, y} will be used hereafter; appendix B contains the computations that support this notation.
On the other hand, the usual embeddingl@® A® ... @ A withihn AQA® ...V ® A as

ARA®.. MR®ARLI®..N el (5.1)
will be applied.

5.1. General results

The following proposition holds.
Proposition 1.Let (A, A) be a coalgebra with generatok§,i = 1,...,7 and Casimir

elementC (X4, ..., X;), and let us consider th&th coproductA™ (X;) of the generators
and themth coproductA ™ (C) of the Casimir. Then,
[A(C), AN (X))} aore. mos =0 i=1,...,1 1<m<N. (5.2)

Proof. The casen = N is easily proven by applying the homomorphism property for the
Nth coproduct. On the other hand, by following Sweedler’s notation, the second coproduct
of the Casimir can be written as the sum

AP(C) =) " C1y ® Cau. (5.3)

If we now compute (5.2) we obtain

[A"(C), AM (X} ag.mea = [ACO) @10 .. Y™ @ 1L AN (X))} ag.mea (5.4)
=[APCO)®1®.. " ™LA @ AN ™) o AP (X)sg.mea  (5.5)
=Y [A"O)®18.." ™ @1 A" (C1) ® AV (Can)ag..mo4

(5.6)
= D [A™(C), A (Cr)lag.mpa @ AN (Cay) (5.7)
= 3 AM(C, Craba) ® AN (Ca) = 0 (5.8)

where (5.4) reflects the usual embedding (5.1). The next step (5.5) includes the definition
(4.5), that is applied in (5.6) with the help of (5.3). At this point the identity functions in the
first term allow us to split the (Poisson/commutator) bracket as (5.7), and the fact that we
have considered thath coproducts for the Casimirs leads to the final result by taking into
account that any order coproduct is a (Poisson/commutator) map andCth@i,f, = O

for any Cy, function. O

This result provides a straightforward generalization of tie= 2 construction of
integrable systems sketched in section 3.
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Theorem 2Let (A, A) be a coalgebra with generataXs,i = 1, ...,/ and Casimir element
C(X1,...,X;) and let’H be an arbitrary (smooth/formal power series) function of the
generators ofA. Then, theN-particle Hamiltonian

H™ = AM(H(Xq, ..., X)) = H(AM (X, ..., AN (X)) (5.9)
fulfils

[C™, HM} jgag.m04 =0 1<m<N, (5.10)
where theN Casimir element€™ (m = 1,..., N) are defined through

C™ = A(C(X1,..., X)) = C(A™(X1), ..., A™(X)). (5.11)

Proof. The fact thatd ™ andC™ are in involution is again a straightforward consequence
of the homomorphism property oA®). The rest of the proof follows directly from
proposition 1, that tell us that th&/th coproduct of any generator commutes with all
the lower-dimensional coproducts of the Casimir. Since Huis an arbitrary function of
such generators it will (Poisson)-commute with all th& (C) elements. |

Corollary 3. In particular, all theC”? elements generated by the Casimirs are in involution
[A® ), AVC)} =0 Vk, j. (5.12)

To prove this assertion, it suffices to take= maxk, j} and apply the theorem in the
caseH = C. This ensures the involutivity among all the constants of motion. Note that, in
principle, we have a set @f 4 1 constants of motiopC™®, c@, ..., c™, H™}, butCc®
can be a real number (see the examples in section 3) and, in that case, we are Iaft with
non-trivial integrals. On the other hand, functional independence among them is guaranteed
by the fact that eaclt'”) element lives oM ® A ® ... ® A and that onlyC™ and H™)
will share the same tensor space. In c&&’ is functionally dependent oa™’, we can
always take theVth coproduct of any generator as the remaining independent constant of
motion.

It is also immediate to check that, if our coalgebra has more than one functionally
independent Casimir elements, the previous results hold simultaneously for all of them.

5.2. Classical mechanical systems

The systematic construction of classical systems is provided by the previous results when
applied onto a Poisson coalgebra. Complete integrability is obtained when a canonical
realizationD of the Poisson coalgebra is added to the general algebraic construction. As a
consequence, under suéh the Poisson bracket to be used is

N 9f ah 9k B
U b asns. von = Z( f f)

i=1

(5.13)
dq; 0p;  0q; Op;

the N-particle classical Hamiltonian is written

H™M@q1, ....qn. p1, ..., pn) = (D®...Y @ DY(ANM (H(X1, ..., X))
=D ®..." @ D)HAM(Xy),..., AN (X))
=H(D®..Y®D)(AM(X)),....,(D®..Y @ D)(AM X)) (5.14)
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and theN — 1 Casimir functionsC™ (m =1, ..., N) read

C™(q1,....,qn,p1, ..., pN) = (D Q.. @ D)(A™(C(Xy, ..., X))
=(D®.."™®D)CA™(X,...,A™(X))))
=C((D®.."Q@D)A™(X1),...(D®.."” Q DA™ (X)))). (5.15)

Since each space is linked to only one degree of freedom, complete integrability @ffthe
Hamiltonian follows from (5.15). If we are dealing withindependent Casimir functions

C;, the formalism can lead to the preservation of complete integrability for any realization
D depending onr pairs ¢ < r) of canonical coordinates. Moreover, nothing prevents us
from the use of ‘non-canonical’ realizations, as we shall see in the following. On the other
hand, in the case that other canonical realizatibhsD”, ... exist, their simultaneous use

in order to realize the tensor products Afas, for instanceD ® D’ ® D” ... will provide
‘mixed’ realizations of the same underlying abstract coalgebra.

It is also important to stress that no assumption concerning the explicit form of the
coproduct is needed to prove these statements. Therefore, deformed Poisson coalgebras
can be implemented with no difficulty within this algorithm in order to provide (deformed)
integrable systems, as was done for= 2 in section 3.1.

5.3. Quantum mechanical systems

Proofs of the aforementioned results when the commutator bracket is considered, offer no
particular comments, up to those already included in appendix B, and the essential algebraic
features of the general method presented here are not modified by the non-commutativity
of the algebraA with respect to the-) product.

However, from a computational point of view it is important to stress that in general extra
contributions coming from the unavoidable reordering processes will have to be considered.
Likewise, the quantum mechanical analogues of canonical realizafiondll be obtained
either by using the generatofsandg of the Heisenberg—Weyl algebra or by means of the
so-called boson realizations in terms of the operatoed a, fulfilling [a,a,] = 1 (see
[30] and the references there included for recent applications of bosonization procedures in
the representation theory of quantum algebras). Among the Hamiltonians that are explicitly
constructed in what follows, those expresed in terms of canonical coordinates should be
guantized in that way, and the remaining ones would lead to quantum angular momentum
(and, in particular, spin) chains.

6. Some coalgebra-invariant classical integrable systems

We now present some examples of completely integrable systems obtained with the aid
of the previous results. Some of them are (to our knowledge) new ones, and others
(although already known) are shown to underly a ‘hidden’ coalgebra symmetry. Integrable
deformations appear under quantum coalgebra symmetry in a direct way.

6.1. Aso(2,1) family including Calogero systems

If we recall the (undeformed)Nth coproduct (4.9) for theo(2, 1) Poisson coalgebra and
considerN copiesD ® D ... ® D of the canonical phase-space realization (2.18) we
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obtain the followingN -particle functions

N
fila.p) = (D@ D.." ® D) AN () =Y picosy,
i=1

N
flq.p)=D®D.." @ DYANM (1) =) pi (6.1)
i=1

N
fi@.p)=D&D.." @ D)(AN (J3) =) p;sing;
i=1
that close ano(2, 1) coalgebra. Now, if we take as Hamiltonian functibhthe quadratic
two-parameter function (3.7), theorem 2 gives rise to the following integrable Hamiltonian

No\2 N
H™(q,p) = (Z Pi) +3 Y pipj((k1+ K2) COSg; — ;) — (k1 — K2) COSgi + g)).
i—1 ij=1

(6.2)

All the constants of motion in involution are given by the phase-space realizations of all
the mth coproducts of the Casimir functiafi = J — JZ — JZ (see (5.15)), that read

C"™(q,p) =) 2pipj(1—cosgi—qp))  m=2,...,N. (6.3)
i<j
Note that, in the chosen realizatiofi™ (g1, p1) = O.

The caser; = k» means that (6.2) depends on the differen@gs- ¢;). In particular, if
we specialize the parameters in the forin= «, = —1, the chosen Hamiltonian coincides
with the Casimir. In that case, (6.2) is just"’ and (6.3) gives u®/ —1 constants of motion
in involution (but, for instance, any; function (6.1) can be chosen to obtain a complete
family of integrals). The systerH# ) = Zf\ij 2p; pj(1 — codg; — g;)) was first introduced
by Calogero [20] as an integrable Hamiltonian of the general fype Zf‘ij pip;i f(qi —qj)

(the Hamiltonian structures underlying an integrable nonlinear shallow-water equation with
peaked solitons—the so-called ‘peakons’ [31]—belongs to that class of systems).

The ‘hidden coalgebra symmetry’ of this particular system was explicitly introduced in
[18] and it was also implicitely stated in [19]. However, a crucial point is that any function
‘H of the generators (and not only the Casimirs) can now be taken as the (integrable)
Hamiltonian, thus generalizing the original Calogero model in a highly arbitrary way. For
instance, if we specialize the parameterskas= x, = 1, we arrive at theN-particle
generalization of (3.9):

N N
H™(q,p) =) 2p?+ ) 2pip;j(1+cosg; — ) (6.4)
i=1 i<j

which is of course in involution with all th€ ™ functions (6.3).

6.2. The algebra, and an integrable oscillator chain

Any other Lie algebra can give rise to an integrable system by following the same procedure.
For instance, we mention here the oscillator Lie algéhres generated byN, A, A_, M}
with Lie—Poisson brackets

(N, Ay} = A, [N,A_} = —A_ (AL, A} =M {M,} =0. (6.5)
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Besides the central generathf there exists another Casimir invariant far:
C=NM-A A_. (6.6)

A canonical D realization for this algebra with vanishing Casindlris given by

D(N)=p D(Ay) = /pet D(A) = /pe! DM) = 1. (6.7)
Let us now consider th&{ function
H=MAN+uA,A_. (6.8)

It is immediate to check that, by using the primitive coproduct (4.9) for all the generators,
theorem 2 provides the following integrable Hamiltonian

N N
H™(q,p)= (. +w) ) pi+21 ) /Pip;costig: — g)) (6.9)
i=1

i<j
which is just the one introduced in [21]. The integrals of the motion in involution are given
by the coproducts of the Casimir (6.6) in the chosen realization, and read

C"™(q,p)=Y)_pi— Y 2P costig: — g;). (6.10)
i=1

i<j
The quantization of the Hamiltonian (6.9) has been performed in [32], where the equivalence

between the quantum version of (6.9) and a system of coupled oscillators is shown (see
also [33]).

6.3. An integrable deformation froii,so(2, 1)

The (standard) quantum deformation ©6(2,1) generates, through théVth order
generalization of the comultiplication map (4.10) and the deformed realizadignan
integrable deformation of the family (6.2). Let us fik and start by defining the quantities

H z k=1 . N )
o= 2%(1}95%)( l_[ eépf). (6.11)

j=k+1

The N-particle canonical (deformed) phase-space realization will be

N
fi@.p)=(D:®D...") & D)(AN (1)) = ) i cosg;
i=1

N
£@.p=D.®D,.. ) @D)ANM (1) =) p; (6.12)
i=1

N
f5@.p)=D.®D..." @ D)(AN(J3) = > i sing.
i=1

Now it is clear that, by taking as Hamiltonian function (3.13), theorem 2 provides the
following integrable Hamiltonian

N 2 N
H™(q,p) = (Z p,») +3 ) mim (k1 + k2) COSgi — q;) — (k1 — k2) COS(g; + g)).-
i=1 i,j=1

(6.13)
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The integrals of the motion are just tli& realization of thenth deformed coproducts
of C, (2.8). A closed expression for them can be readily obtained if we realize that the
functions fulfil the relation

2
Zsmh(%(pl+pz+---+ ) = L+ T2 4 -+ T (6.14)

Now it is not difficult to check that the explicit formula faf™ is

C" =" 2mm;(1- cosq; — g;)) m=1...,N (6.15)
i<j
where and, as expected, in the limit— 0 we recover the ‘classical’ Gaudin—Calogero
system (6.3).
Once again, the particular deformed system= x, = —1 does not coincide with the
Nth Casimir function, although the former can be obtained from the latter by substracting

. sinh(% Jo) ~
the functionA™ (2=—2%)? — J2).

6.4. A Ruijsenaars—Schneider-like model from a quantum deformationsefl{1Poincag
algebra

The (1+ 1) Poincaé algebraP(1, 1) is generated by K, H, P} and can be realized in
Poisson form by the following brackets

{(K,Hy =P (K,P})=H {(P,H}=0. (6.16)
The known Casimir function foP (1, 1) is,

C =H?-P? (6.17)
and aC = 1 Poisson realization of this algebra in terms of a canonical coordjnatel its
conjugate rapidity is the following:

D(K)=gq D(H) = coshp D(P) = sinhé. (6.18)

If we consider the primitive coproduct (4.9) and take as Hamiltonian function jusHthe
generator, the resultant coalgebra-induced integrable system reads,

N m
H™(q.0) = coslv, C™(q.0) =m+ Y 2cosht; — 6)). (6.19)
i=1 i<j
Note that the associated dynamics is quite trivial since (6.19) depends only on the canonical
momenta.
However, a completely different system is derived when we consider the (non-
coboundary) quantum deformatidhP(1, 1) given by the deformed coproduct

AK)=1K+K®1
AH)=e:X@H+ H®eX (6.20)
AP)=e K@ P+ PgeX

that, in spite of the non-triviality of the deformation, is still compatible with the undeformed
brackets (6.16). This deformation was first introduced in [22], and it was later recognized
as the dual of Woronowicz's quantum (pseudo-)Euclidean group [34].

Therefore, the compatibility with (6.16) implies that the phase-space realization (6.18)
is also valid in the deformed case. If we consider again the time translétias the
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Hamiltonian function, the Nth generalization of the deformed coproduct and the phase-
space realization (6.18) gives rise to the integrable system defined by

N i—1 N
H™(q,0) =) coshy; ex (— E( ) 5( )) 6.21
4<q); p Z;q,+2k;lqk (6.21)
This system presents strong analogies with respect to the so-called Ruijsenaars—Schneider
Hamiltonian [23], which is a relativistic analogue of Calogero—Moser systems.
The integrals of motion are obtained, as usual, fromAttle order deformed coproducts
of the Casimir (6.17). A straightforward computation shows that they are

m i—1 N
C!"(q.0) =) _2coshp; — 9j)exp< - %(Qi —qj) — Z(Zqz) + z( > qk>>-
i<y =1 k=j+1

(6.22)

Note that in this case additional integrals appear due to the factPtitatmmutes withH.
In particular, the deformed/th coproduct ofP

N i—1 N
PM(q.0) = sinhy; exp( - %(Zq,) + %( > qk)) (6.23)
i=1 i=1

k=i+1

will Poisson-commute with bott7" and C"".

7. Angular momentum realizations

The coalgebra symmetry that gives riseMantegrals of motion in involution is not restricted

to the use of canonical realizations. We shall consider in this section its application to the
construction of classical integrable ‘angular momentum’ chains througivif2e1) Poisson
coalgebra given by a primitive coproduct and the Poisson bivector

A = 0335, A By, — 0106, A Doy + 0205, A Do (7.1)

afterwards, its deformed counterpart (2.13) will be examined and the consequences of the
deformation analysed.

These examples will also stress the possibilities of applying the actual formalism to
the quantum mechanical context. From the following examples it will become clear that
guantization will imply (up to sometimes important contributions coming from reordering)
the substitution of ther coordinates by the corresponding Pauli matrices. In this way, the
so(2, 1) systems can be interpreted as Gaudin magnets, and the quantum deformation of the
coalgebra will introduce a variable range interaction in the model. An exhaustive study of
these aspects will be presented elsewhere.

7.1. Theso(2,1) model: Classical XYZ Gaudin magnet

Let us now consider the Poisson bracket (7.1) corresponding teotf¥e 1) Lie algebra,
which is tantamount to considering—in our language—the realization

S(J2) =02 S(J) =01 S(J3) =03 (7.2)

that will be completely defined provided the valde= o2 — 02 — 0% is given. Now,
a straightforward replica of the generalized Calogero systems of the previous section is
provided by N-copies of (7.2) (that we shall distinguish with the aid of a superingex
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and that could have different valuesof the Casimir) and the (undeformetth coproduct
(4.9). Therefore, we have the (quite trivial) realization for the coproducts

N
S®S..Me85AN () =) of i=123 (7.3)
k=1

If we preserve (3.7) as a Hamiltonian function, theorem 2 provides the following integrable
Hamiltonian:

No\2 N N\2 No\2
HY (o) = <Zaé> +K2(ZU{) +K1<Za§)
I =1 =1

N
{(05)? + k20 4 k1 (ah)?} 4+ 2 Z {0503 + K20i0] +Kk10403).  (7.4)

i<j

Il
- £

1=

=

That is, a classical long-range interactidg’ Z angular momentum chain of the Gaudin
type [24, 35, 36].

The constants of motion are derived from théh coproducts of the Casimir function
C = J? — J? — JZ in the usual way and read,

C" (o) = Zc, + ZZaz"azj - O’{O‘ii - aéa{. (7.5)
=1 i<j

Since the first term is constant, we are lead to the hyperiotia-Gaudin system. Note that

this system becomes the keystone for the integrability of any finite chain obtained through

an arbitrary function of theo(2, 1) generators. On the other hand, this construction can

be immediately quantized by transforming (7.2) into a representation in terms of angular

momentum operators and by taking into account the corresponding discrete values for the

Casimir operators.

7.2. U,(so(2,1)) andXY Z model with variable range exchange

Let us now construct an integrable deformation of ¥¥Z classical Gaudin system through
U,(so(2, 1)). The Poisson realizatiof, that we are going to consider is

S.(J2) = 62 S.(J1) = 61 S.(J3) = 63 (7.6)

with ¢, given by (2.14). Note that th& coordinates are not the classical ones (they live
on a deformed hyperboloid (2.14)), although we shall consider a particular representation
in terms of the classical structure (7.1) later.

As usual, the comultiplication map (4.10) and the chosen realiz&tigives rise to the
following functions expressing th&'th-order coproduct of thd; generators:

N -1 ) N )
($:®S... @S AN () =) (l_[e‘?ﬁ>6i( I1 eé&z')

I=1 j=I¥1

N
(S:®8... @8 (AN () =) 5 (7.7)
=1

B N -1 o N o
($:®5...Y®5) (AN (J3)) ( g2 é)%( I1 e)
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If we consider now the Hamiltonian function (3.13), ¥&h-order coproduct leads, through
the usual method, to the following deformation of the clasical Gaudit¥ system (7.4):

N
HM (&) = {65 + € (k2(51)% + k1(5H)%)
=1
+2 {6163 + € (k26161 + K15564)) (7.8)

i<j

where theg, o functions depend o#, as follows:

i—1 N
p=-3(Lad) +3( 3 o)
j=1 k=i+1
' ) i—1 N (7.9)
aj =i+ B =—3GE3—-5))—) G+ Y 65
=1 k=j+1
This Hamiltonian corresponds to a sort &Y Z Gaudin magnet with variable range
anisotropy given by they;; functions. In the limitz — 0 we recover the non-deformed
XY Z system (7.4). Note that the commutativity among &leallows such a compact final
expression, that will certainly contain additional terms in the quantum mechanical case. The
complete integrability of such a Hamiltonian is ensured by itte deformed coproducts
(m < N) of C, (2.8) in theS, representation. A closed expression for them is not difficult
to find by recalling formula (6.14):
u . m sinh(35%) sinh(35. . .
CM(E) =) ehci+2) e N300 Snn502) 5i6{ — 5164 (7.10)
= z/2 z/2

i<j

whereC! are the corresponding deformed Casimir functions on each lattice site. As usual,
the Nth Casimir can be considered as the Hamiltonian. In that case, any of the coproducts
(7.7) can be used to complete the integrals of the motion.

7.2.1. The zero representationWe insist now on the fact that th& coordinates are
deformed ones. However, realizations in terms of the non-deformed variaplase
available. In particular, let us consider the (deformed) Poisson realiz&tion
sinh(302) sinh(502)
022/2 022/2
The functions defined by (7.11) close &hso(2, 1) under the Poisson bracket (7.1) and
provided that the classical coordinates are defined or thé conec? — o2 — o2 = 0. In
this case, the previous construction leads to the following Hamiltonian:
N H z 1
sinh(305)
HY (o) = o2 4 b [ 2222292
M(a) ; (03) oo/

U.(J2) = 02 U.(J1) = o1 U.(J3) = os. (7.11)

2
) (k2(0)? + k1 (ah)?)

N o sinh(30) sinh(%04) o .
+2 oo + €% ~2°2 272 (kooio! + kiobod) . 7.12
Z { 2%2 O_le/z O'ZJZ/Z 207101 10303 ( )

The constants of motion are easily computed and read (in our represer@atio):

" sinh((ol) sinh((o)
Cgm)(a)=2ZeZ“’f r-(2 2) r-(2 2)

i<j O’éZ/Z szz/z

i<j

{02"02]' - aialj - 03’;03{'}. (7.13)
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In this case,C§m) are hyperbolic Gaudin Hamiltonians with variable range exchange.
An analysis of long-range Hamiltonians and some examples of variable range interacting
systems can be found in [36] and [25], respectively.

8. Concluding remarks

Summarizing, we have demonstrated that any algebrandowed with a coassociative
coproductA (either deformed or not) can be seen as the abstract object that, after choosing
a given representation, gives rise in a direct and systematic way to a wide claés of
dimensional integrable systems (with finite but arbitrary). Within this class of systems,

the original coalgebra is not only a set of symmetries, but the algebraic object that generates
explicitly the Hamiltonian and the constants of motion. Moreover, the theory can be used
to generate both classical and quantum systems by choosing, respectively, either a Poisson
or an operatorial realization of.

The universality of the coalgebra-induced construction that we have presented in this
paper suggests a number of further investigations in different contexts. From a general
point of view we would like to mention the unsolved question concerning the existence
of a Lax formulation for this scheme and its connection with the integrability properties
of the known quantum algebra invariant Hamiltonians. On the other hand, a symmetry
method in order to decide whether a known system is coalgebra invariant or not would
evidently be helpful. In this sense, the long-range interacting nature of our construction is
worth emphasizing, although not essential (we recall that known quantum algebra invariant
systems usually contain only nearest neighbour interactions).

As a consequence arising at a purely ‘classical’ level, phase-space realizatafrise
algebras become relevant tools in order to construct new examples. If such a realization
exists in terms of only one pair of canonical coordinates, complete integrability is ensured.
However, for Lie algebras with rank greater than one, both the existence of various Casimir
functions and the possibility of having realizations depending on more than one canonical
pair have to be taken into account in order to analyse the complete integrability of the system.

The explicit solutions for the examples presented here also deserve further investigations.
Known results concern the(2, 1) Calogero system defined through the Casimirs (6.3), that
was already solved in [20]. Th¥ = 2 deformed motion has also been shown to be solvable
(and it includes a deformed period) in [37]. For arbitrafy the quantum deformation can
be seen as a displacement from the geodesic motion (on a proper manifold) that characterizes
the non-deformed system. All these results concerning the canonical realization should be
completed and translated into the behaviour of the Gaudin systems defined through the
angular momentum Poisson bracket.

Finally, we think that these results provide a strong physical motivation for Hopf algebra
deformations, since they could now be systematically used to generate new integrable
systems (we recall that the (@ 1) Poincaé example shows that such deformed systems
can be interesting even when their non-deformed counterparts are associated with trivial
dynamics). It is known that the number of Hopf algebra deformations for a diMgn is
not arbitrary; in fact, their classification is intimately linked to the notion of Lie bialgebra
and, for some low-dimensional cases, complete (and constructive) classifications of quantum
deformations have recently been obtained [15]. Therefore, a coalgebra invariant Hamiltonian
constructed from a giverz can be ‘integrably’ deformed in a finite number of ways
that, at least in some cases, can be explicitly obtained and will certainly provide a better
understanding of the physical relevance of coalgebra symmetries.
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Appendix A

The equivalence between definition (4.5) and the usual ones (4.3), (4.4) is obvious for the
N = 3 case, being expressed in terms of the coassociativity condition (4.1). The case
N = 4 is also easy to check by direct computation. Therefore, we shall prove the general
case by induction, by taking into account that, for a genari¢- 1, we have to prove that
any value ofm = 1,..., N in the definition (4.5) leads to (4.3), (4.4).

We shall assume that

AN = (A @ ANy 5 AP Vvm=1...,N—1 (A.1)
holds, and we have to prove that
ANFD -— (AW @ AN—K+Dy 5 AP Vk=1,...,N. (A.2)

If we denote id” = id®id...” ®id, from (4.4) we can computa¥+1 in the following
way:
AN+ (A(z) ® id(N—l)) o AWM
— (A(Z) ® id(Nfl)) o (A(M) ® A(N7’71)) o A(Z)
— (((A(Z) ® id(Wl—l)) o A(m)) ® A(N—m)) o A(Z)

= (A"TD @ ANy 5 AP (A.3)
where we can choosén = 1,..., N — 1. Therefore, the validity of (A.2) is proven for
k=2,...,N.

The only relation which remains to be proven is the dase1l, that reads
AN = id@ AM) o A@, (A.4)

In this case we can compute its equivalence with respect to the known recurrence (4.4) as
follows:
AN — (AD g idV-Dy o AW

= (AP Rid®id"V2)o AN

— (A(Z) Rid® id(N—Z)) ° (A(Z) ® A(N—Z)) o A®@

— (((A(Z) ®id) o A(Z)) ® A(N*Z)) o A®@

= (((([d® A®) 0 A®P) @ AN2) o AP

=(d® AP ® id(N*Z)) o (A(Z) ® A(N*Z)) o A@

= ([d®A®? ®id"V2)o AN

=[(d® A?@idV?)o(id@ AN V) A®@

= (d® ((A(z) ® id(N—2)) ° A(N—l))) o A®@

=3{d AM)o A®, (A.5)
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Finally, note that the equivalence between the ordinary definitions (4.3) and (4.4) is obtained
as a byproduct from this derivation by considering the N case.

Appendix B

The aim of this appendix is to prove the homomorphism condition (4.8) that we shall split
into the commutator and Poisson cases, respectively. As usuaN the? case is part of
the definition of a (Poisson) Hopf algebra, and we shall proceed by induction.

B.1. A™ as a homomorphism

Let us consider the algebr& endowed with an associative produet that we shall now
explicitly write. We know that, by definition, the coproduat® is a homomorphism
betweend andA ® A:

AP X . Y)=A2X) AP (Y) VX,Y € A. (B.1)
If we assume thah ¥~ is a homomorphism, by using Sweedler’s notation,
AP(X) =) X ®Xaa  AP¥)=) Vi@ Yoy (B.2)
a ]

and by recalling the definition oA™ in terms of AV—D and A®, we have that
AMX) - AM(¥) = (AN P Rid) 0 AP (X)) - (AN P ®id) 0 AP (Y))

= > (AN Y (X1) ® X20) - (AN V(Y1) ® Yap)
o,p

=Y ANTI(Xy, - Yip) @ Xow - Yop
a.p

=AMV gid) ( Z X1o - Y1 ® X2y - Y2ﬂ>
a.p

=AMV Rid) o APX . Y) =AM (X -Y). (B.3)

This result holds for-) being either a commutative or a non-commutative product. In the
latter case, the homomorphism condition for the commutaxgrY] := X - Y — Y - X is
immediately deduced from this result.

B.2. A™ as a Poisson map

Let us assume thatd, A®) is a Poisson—Hopf algebra and that i — 1)th coproduct
fulfils

(ANDX), A V(Y agre. vves = AVTVAX, Y},) VX,Y € A. (B.4)

(Hereafter we shall supress the subscripts that label the space where the Poisson bracket is
defined.) From (4.5) we can write

(AN (X), AM (7)) = (AY TV @id) o AP (X), (AN YV id) 0 AP(Y)). (B.5)
With the aid of (B.2) we can compute it explicitly:

(AN X), AM (1)) = {<A<N—l> ® id) ( D Xu® Xza), (AN @ id) ( D Ty ® Y2ﬁ> }
o B
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D AN (X 1) ® Xou, ANV (Y1) ® Yp)
ap

D AANI (X1y), ANV (Y1)} @ Xoy - Yop
a.fp

AN D (X1) - ANV (Y1) ® {X2u Y2p))
D (AN (X1, Yip)) ® (Xan - Yop) + AN ™D (X - Y1) ® {Xau, Yop))

a,p
= Zﬁ (AN @ id) (X1 Y15} ® (Xau - Y2p) + (X1 - Y1) ® {X2u, Y25))
= ZS:(A(N” ® id)({X1a ® X2a, Y1p ® Y25})
=Y Vg id)({ D X10 ® X2, ) Y15 ® YzﬁD
=AYV ®id) o AOZZ))({X, Y)) = Z(N)({X, Y}). (B.6)

Throughout this computation we have used the Poisson-map condition (B.4)¥or

and the homomorphism condition for the (now commutatig¢¢)product in the Poisson
algebra. Note that the proof (b) of the commutative (Poisson) case is more involved. In
this classical mechanical context we have to impose the compatibility wfth respect to

two independent products: the (commutative) ‘pointwise’ gneand the Poisson bracket

{,}. In contrast, in the ‘qguantum-mechanical’ case the latter is replaced by the commutator,
which is constructed in terms of the former (now non-commutative).
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